PILOT LEARNING
 CALCULUS II ENGINEERING
 PROBLEM-SET 10

FALL 2019
(1) Determine whether the series is convergent or divergent
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+4}$
(d) $\sum_{n=3}^{\infty} \frac{n^{2}}{e^{n}}$
(b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(e) $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n}$
(c) $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$
(f) $\sum_{n=1}^{\infty} \sin (1 / n)$
(2) Explain why the integral test cannot be used to determine whether

$$
\sum_{n=1}^{\infty} \frac{\cos \pi n}{\sqrt{n}}
$$

converges.
(3) Find all positive values of b for which the series

$$
\sum_{n=1}^{\infty} b^{\ln n}
$$

converges.
(4) Approximate the sum of the series correct to 4 decimal places.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n^{2}}{10^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{3^{n} n!}$
(5) Suppose $\sum_{n=1}^{\infty} a_{n}$ is a convergent series where each term a_{n} is positive. Is the series $\sum_{n=1}^{\infty} \sin \left(a_{n}\right)$ convergent?
(6) Show that the series $\sum_{n=1}^{\infty}(-1)^{n-1} b_{n}$ where $b_{n}=\frac{1}{n}$ when n is odd and $b_{n}=\frac{1}{n^{2}}$ when n is even, is divergent. Why does the alternating series test not apply?

